CALC 1 Home Documentation Home Contact
Loading

Payment Streams and Depreciation Functions

Function Description Example Result
cumipmt(periodicRate, numPeriods, presentValue, startingPeriod, endingPeriod, whenDue) The total interest paid on a loan in specified periodic payments. cumipmt(0.1325/12, 300, 50000, 1, 12, 0) -6608.92
cumipmtpmt(periodicRate, payment, presentValue, startingPeriod, endingPeriod, whenDue, decimalPlaces) The total capital repaid on a loan in specified periodic payments when payment is specified. cumipmtpmt(.1325/12, -573.35, 50000, 1, 12, 0, 2) -6608.89
cumprinc(periodicRate, numPeriods, presentValue, startingPeriod, endingPeriod, whenDue) The total capital repaid on a loan in specified periodic payments. cumprinc(.1325/12, 300, 50000, 1, 12, 0) -271.29
cumprincpmt(periodicRate, payment, presentValue, startingPeriod, endingPeriod, whenDue, decimalPlaces) The total capital repaid on a loan in specified periodic payments when payment is specified. cumprincpmt(.1325/12, -573.35, 50000, 1, 12, 0, 2) -271.31
ddb(cost, salvage, life, deprPeriod, deprFactor) The depreciation of an asset for a given year using the double (or other factor) declining_balance method. ddb(1000, 100, 4, 1, 2) 500
ddbrd(cost, salvage, life, deprPeriod) The remaining depreciation of an asset for a given year using the double (or other factor) declining balance method. ddbrd(10000, 500, 5, 1, 2) 5500
fv(periodicRate, numPeriods, payment, presentValue, whenDue) The future value of an initial sum with a subsequent stream of payments. fv(0.00375, 180, -200, -50000, 1) 149553
ipmt(periodicRate, period, numPeriods, presentValue, futureValue, whenDue) The portion of the periodic payment which is interest for a fixed rate loan or annuity. ipmt(0.005, 25, 120, 200000, -100000, 0) -922.41
irr(list, estimate) Calculates the internal rate of return of a series of cash flows. irr(listf, 0.13)  
mirr(list, financeRate, reinvestRate) The modified internal rate of return of a series of cash flows. mirr(listf, 0.09, 0.0425)  
nper(periodicRate, payment, presentValue, futureValue, whenDue) The number of payment periods for an annuity. nper(0.005, -200, -50000, 150000.00, 1) 149.58
npv(periodicDiscountRate, list) The net present value of an investment with regular cash payments. npv(0.1, listf)  
npvcf0(periodicDiscountRate, list) The net present value of an investment with regular cash payments including cash flow 0. npvcf0(0.13, listf)  
pmt(periodicRate, numPeriods, presentValue, futureValue, whenDue) The payment per period for a fixed rate loan. pmt(0.005, 120, 200000, -100000.0000, 0) -1610.21
ppmt(periodicRate, period, numPeriods, presentValue, futureValue, whenDue) The portion of the periodic payment which is repaid capital for a fixed rate loan or annuity. ppmt(0.005, 25, 120, 200000, -100000, 0) -687.8
pv(periodicRate, numPeriods, payment, futureValue, whenDue) The present value of a stream of future payments with a final lump sum. pv(0.00375, 180, -200, -50000, 1) 51732.04
rate(numPeriods, payment, presentValue, futureValue, whenDue, estimate) Calculates the interest rate for an annuity. rate(32.0, 0, -6000, 10000, 0, 0.1) 0.02
sln(cost, salvage, life) The depreciation of an asset in a single period using the straight line depreciation method. sln(10000, 1000, 6) 1500
syd(cost, salvage, life, deprPeriod) The depreciation of an asset for a given year using the sum_of_years'_digits method. syd(10000, 500, 5, 1) 3166.67
sydrd(cost, salvage, life, deprPeriod) The remaining depreciation of an asset for a given year using the sum of years' digits method. sydrd(10000, 500, 5, 1) 6333.33

Reference:

Time value of money - From Wikipedia, the free encyclopedia

Depreciation - From Wikipedia, the free encyclopedia